Solar Collector Analysis and Design

Larry Caretto Mechanical Engineering 483 Alternative Energy Engineering II

March 22–24, 2010

Northridge

 $\begin{array}{c} \textbf{Midterm Exam} \\ \hline \textbf{Sasturbine using landfill gas with 85% CH_4 (Q_c = 802,802 kJ/kMol) 15% CO_2, 5% N_2 \\ \hline \textbf{P}_{comp,in} = 100 kPa; T_{comp,in} = 290 K; \eta_{s,comp} = 87\%; \\ DP_{combustor} = 30 kPa; T_{in,turbine} = 1450 K; P_{out,turb} = 110 kPa; \eta_{s,turb} = 90\%; P = 50 MW, \eta_{generator} = 94\% \\ \hline \textbf{Find: air and fuel mass flows and outlet %O_2 \\ \hline \textbf{Start by finding heating value of landfill gas \\ \hline \textbf{Q}_{i} = \overline{\frac{Q_{i}}{M}} = \frac{\sum_{m, \overline{Q}_{i}}^{m}}{\sum_{m, M_{i}}^{m}} = \frac{\frac{(0.8 \binom{802,802 kJ}{kMol}) + (0.20)}{(0.8 \binom{16.04 kg}{kMol}) + (0.15 \binom{44.01 kg}{kMol}) + (0.05 \binom{28.01 kg}{kMol})}{\frac{28.01 kg}{kMol}} = \frac{30,827 kJ}{kg} \\ \hline \textbf{Denominator is } \textbf{M}_{tuel} = 20.83 kg/kmol} \end{array}$

Midterm Problem One V
 x = (0.8)(1) + (0.15)(1) + (0.05)(0) = 0.95 y = (0.8)(4) + (0.15)(0) + (0.05)(0) = 3.20 w = (0.8)(0) + (0.15)(2) + (0.05)(0) = 0.30 v = (0.8)(0) + (0.15)(0) + (0.05)(2) = 0.10
• A = x + y/4 - w/2 = $0.95 + 3.20/4 - 0.30/2 = 1.6$ • Get λ from Air/Fuel ratio found previously - Air/Fuel = 1/(fuel/air) = 1/0.02966 = 31.71 Air = 138.2724 Air = M = 31.71 kg air = 138.2724 Interview of the second sec
$\frac{Air}{Fuel} = = \frac{138.27\lambda A}{M_{Fuel}} \implies \lambda = \frac{Air}{Fuel} \frac{M_{Fuel}}{138.27A} = \frac{31.71kg air}{kg fuel} \frac{kmol fuel}{\frac{138.27kg air}{kmol O_2}} = 3.175$
$\% O_2 = \frac{100 (\lambda - I)A}{x + \lambda A B_d - A + z + \frac{v}{2}} = \frac{100 (3.175 - 1)I.6}{.95 + 2.175 (1.6) (4.7742) - 1.6 + 0 + \frac{0.1}{2}}$
Northridge %O2 = 14.71% 7

	N	/lidterr	n P	robl	em 1	Thre	ee	
•	Give	n: Discre	te win	d spe	ed data	à		
Perc	ent of Wi	nd-Speed Data	Between	Lower an	nd Upper Ve	locity B	ounds (\	/ in m/s)
Lower	Upper	Percent	Lower	Upper	Percent	Lower	Upper	Percent
0	1	2.8747%	10	11	4.3213%	20	21	0.8028%
1	2	9.8109%	11	12	4.1559%	21	22	0.5310%
2	3	10.307%	12	13	4.1527%	22	23	0.3928%
3	4	9.4960%	13	14	3.9050%	23	24	0.2427%
4	5	8.0058%	14	15	4.0583%	24	25	0.1476%
5	6	6.0967%	15	16	3.4830%	25	26	0.1102%
6	7	5.1868%	16	17	3.0287%	26	27	0.0716%
7	8	4.6691%	17	18	2.1695%	27	28	0.0310%
8	9	4.6374%	18	19	1.6005%	28	29	0.0114%
9	10	4.3865%	19	20	1.2489%	29		0.0640%
calif No	omia State Un Orthric	dge						9

Review Thermal Resistance

- Heat flow analogous to current
- Temperature difference analogous to potential difference
- Both follow Ohm's law with appropriate resistance term
- Current: I = (V₁ − V₂) / R
- Heat Transfer: $Q = (T_1 T_2) / R_{thermal}$

21

California State University Northridge

Solar	Efficienc	y lest h	Results
Type of Collector	Intercept = $F_R \tau \alpha$	Value at x = 0.1	Slope = _F _R U _c
1-cover, black	0.77	0.095	-6.75
1-cover, selective	0.77	0.23	-5.4
2-cover, black	0.74	0.30	-4.4
2-cover, selective caldonia State Corporato Northridge	0.74	0.41	-3.3

